Mechanistic Investigations of PoyD, a Radical S-Adenosyl-l-methionine Enzyme Catalyzing Iterative and Directional Epimerizations in Polytheonamide A Biosynthesis

نویسندگان

  • Aubérie Parent
  • Alhosna Benjdia
  • Alain Guillot
  • Xavier Kubiak
  • Clémence Balty
  • Benjamin Lefranc
  • Jérôme Leprince
  • Olivier Berteau
چکیده

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of bioactive peptides. Among RiPPs, the bacterial toxin polytheonamide A is characterized by a unique set of post-translational modifications catalyzed by novel radical S-adenosyl-l-methionine (SAM) enzymes. Here we show that the radical SAM enzyme PoyD catalyzes in vitro polytheonamide epimerization in a C-to-N directional manner. By combining mutagenesis experiments with labeling studies and investigating the enzyme substrate promiscuity, we deciphered in detail the mechanism of PoyD. We notably identified a critical cysteine residue as a likely key H atom donor and demonstrated that PoyD belongs to a distinct family of radical SAM peptidyl epimerases. In addition, our study shows that the core peptide directly influences the epimerization pattern allowing for production of peptides with unnatural epimerization patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The B12-Radical SAM Enzyme PoyC Catalyzes Valine Cβ-Methylation during Polytheonamide Biosynthesis

Genomic and metagenomic investigations have recently led to the delineation of a novel class of natural products called ribosomally synthesized and post-translationally modified peptides (RiPPs). RiPPs are ubiquitous among living organisms and include pharmaceutically relevant compounds such as antibiotics and toxins. A prominent example is polytheonamide A, which exhibits numerous post-transla...

متن کامل

Peptide Epimerization Machineries Found in Microorganisms

D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP-N-acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently iden...

متن کامل

Carbon extension in peptidylnucleoside biosynthesis by radical-SAM enzymes

Nikkomycins and polyoxins are antifungal peptidylnucleoside antibiotics active against human and plant pathogens. Here we report that during peptidylnucleoside biosynthesis in Streptomyces cacaoi and S. tendae, the C5' extension of the nucleoside essential for downstream structural diversification is catalyzed by a conserved radical S-adenosyl-L-methionine (SAM) enzyme, PolH or NikJ. This is di...

متن کامل

Mechanistic and functional versatility of radical SAM enzymes

Enzymes of the radical SAM (RS) superfamily catalyze a diverse assortment of reactions that proceed via intermediates containing unpaired electrons. The radical initiator is the common metabolite S-adenosyl-l-methionine (SAM), which is reductively cleaved to generate a 5'-deoxyadenosyl 5'-radical, a universal and obligate intermediate among enzymes within this class. A bioinformatics study that...

متن کامل

Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL

Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2018